Bach, R. L., Kern, C., Amaya, A., Keusch, F., Kreuter, F., Hecht, J., & Heinemann, J. (2021). Predicting
Voting Behavior Using Digital Trace Data.
Social Science Computer Review,
39(5), 862–883.
https://doi.org/10.1177/0894439319882896
Caliandro, A. (2024). Follow the user:
Taking advantage of
Internet users as methodological resources.
Convergence: The International Journal of Research into New Media Technologies, 13548565241307569.
https://doi.org/10.1177/13548565241307569
Carrière, T. C., Boeschoten, L., Struminskaya, B., Janssen, H. L., De Schipper, N. C., & Araujo, T. (2024). Best practices for studies using digital data donation.
Quality & Quantity.
https://doi.org/10.1007/s11135-024-01983-x
Christner, C., Urman, A., Adam, S., & Maier, M. (2022). Automated
Tracking Approaches for
Studying Online Media Use:
A Critical Review and
Recommendations.
Communication Methods and Measures,
16(2), 79–95.
https://doi.org/10.1080/19312458.2021.1907841
Freelon, D. (2018). Computational research in the post-
API age.
Political Communication,
35(4), 665–668.
https://doi.org/10.1080/10584609.2018.1477506
Haim, M., & Hase, V. (2023). Computational
Methods und
Tools für die
Erhebung und
Auswertung von
Social-
Media-
Daten. In S. Stollfuß, L. Niebling, & F. Raczkowski (Eds.),
Handbuch Digitale Medien und Methoden (pp. 1–20). Springer Fachmedien Wiesbaden.
https://link.springer.com/10.1007/978-3-658-36629-2_41-1
Jünger, J. (2021). A brief history of
APIs. In
Handbook of Computational Social Science, Volume 2 (1st ed., pp. 17–32). Routledge.
https://www.taylorfrancis.com/books/9781003025245/chapters/10.4324/9781003025245-3
Jürgens, P., & Stark, B. (2022). Mapping
Exposure Diversity:
The Divergent Effects of
Algorithmic Curation on
News Consumption.
Journal of Communication,
72(3), 322–344.
https://doi.org/10.1093/joc/jqac009
Keusch, F., & Kreuter, F. (2021). Digital trace data. In
Handbook of Computational Social Science, Volume 1 (1st ed., pp. 100–118). Routledge.
https://www.taylorfrancis.com/books/9781003024583/chapters/10.4324/9781003024583-8
Li, X., Xu, H., Huang, X., Guo, C., Kang, Y., & Ye, X. (2021). Emerging geo-data sources to reveal human mobility dynamics during
COVID-19 pandemic: Opportunities and challenges.
Computational Urban Science,
1(1), 22.
https://doi.org/10.1007/s43762-021-00022-x
Luiten, A., Hox, J., & Leeuw, E. de. (2020). Survey
Nonresponse Trends and
Fieldwork Effort in the 21st
Century:
Results of an
International Study across
Countries and
Surveys.
Journal of Official Statistics,
36(3), 469–487.
https://doi.org/10.2478/jos-2020-0025
Ohme, J., Araujo, T., Boeschoten, L., Freelon, D., Ram, N., Reeves, B. B., & Robinson, T. N. (2024). Digital
Trace Data Collection for
Social Media Effects Research:
APIs,
Data Donation, and (
Screen)
Tracking.
Communication Methods and Measures,
18(2), 124–141.
https://doi.org/10.1080/19312458.2023.2181319
Parry, D. A., Davidson, B. I., Sewall, C. J. R., Fisher, J. T., Mieczkowski, H., & Quintana, D. S. (2021). A systematic review and meta-analysis of discrepancies between logged and self-reported digital media use.
Nature Human Behaviour,
5(11), 1535–1547.
https://doi.org/10.1038/s41562-021-01117-5
Reiss, M. V. (2023). Dissecting
Non-
Use of
Online News –
Systematic Evidence from
Combining Tracking and
Automated Text Classification.
Digital Journalism,
11(2), 363–383.
https://doi.org/10.1080/21670811.2022.2105243
Scharkow, M. (2016). The
Accuracy of
Self-
Reported Internet Use—
A Validation Study Using Client Log Data.
Communication Methods and Measures,
10(1), 13–27.
https://doi.org/10.1080/19312458.2015.1118446
Schatto-Eckrodt, T. (2022). Hidden biases – The effects of unavailable content on Twitter on sampling quality. In Grenzen, Probleme und Lösungen bei der Stichprobenziehung (pp. 178–195). Halem.
Sepulvado, B., Wood, M. L., Fridmanski, E., Wang, C., Chandler, M. J., Lizardo, O., & Hachen, D. (2022). Predicting
Homophily and
Social Network Connectivity From Dyadic Behavioral Similarity Trajectory Clusters.
Social Science Computer Review,
40(1), 195–211.
https://doi.org/10.1177/0894439320923123
Sloan, L., Jessop, C., Al Baghal, T., & Williams, M. (2020). Linking
Survey and
Twitter Data:
Informed Consent,
Disclosure,
Security, and
Archiving.
Journal of Empirical Research on Human Research Ethics,
15(1-2), 63–76.
https://doi.org/10.1177/1556264619853447
Struminskaya, B., Lugtig, P., Toepoel, V., Schouten, B., Giesen, D., & Dolmans, R. (2021). Sharing
Data Collected with
Smartphone Sensors.
Public Opinion Quarterly,
85(S1), 423–462.
https://doi.org/10.1093/poq/nfab025
Ulloa, R., Mangold, F., Schmidt, F., Gilsbach, J., & Stier, S. (2025). Beyond time delays: How web scraping distorts measures of online news consumption.
Communication Methods and Measures, 1–22.
https://doi.org/10.1080/19312458.2025.2482538
Wagner, M. W. (2023). Independence by permission.
Science,
381(6656), 388–391.
https://doi.org/10.1126/science.adi2430
Yan, P., Schroeder, R., & Stier, S. (2022). Is there a link between climate change scepticism and populism?
An analysis of web tracking and survey data from
Europe and the
US.
Information, Communication & Society,
25(10), 1400–1439.
https://doi.org/10.1080/1369118X.2020.1864005