Bruns, A. (2019). After the
“APIcalypse”: Social media platforms and their fight against critical scholarly research.
Information, Communication & Society,
22(11), 1544–1566.
https://doi.org/10.1080/1369118X.2019.1637447
Buehling, K. (2023). Message
Deletion on
Telegram:
Affected Data Types and
Implications for
Computational Analysis.
Communication Methods and Measures, 1–23.
https://doi.org/10.1080/19312458.2023.2183188
Christner, C., Urman, A., Adam, S., & Maier, M. (2022). Automated
Tracking Approaches for
Studying Online Media Use:
A Critical Review and
Recommendations.
Communication Methods and Measures,
16(2), 79–95.
https://doi.org/10.1080/19312458.2021.1907841
Driel, I. I. van, Giachanou, A., Pouwels, J. L., Boeschoten, L., Beyens, I., & Valkenburg, P. M. (2022). Promises and
Pitfalls of
Social Media Data Donations.
Communication Methods and Measures, 1–17.
https://doi.org/10.1080/19312458.2022.2109608
Freelon, D. (2018). Computational research in the post-
API age.
Political Communication,
35(4), 665–668.
https://doi.org/10.1080/10584609.2018.1477506
Haim, M., & Hase, V. (2023). Computational
Methods und
Tools für die
Erhebung und
Auswertung von
Social-
Media-
Daten. In S. Stollfuß, L. Niebling, & F. Raczkowski (Eds.),
Handbuch Digitale Medien und Methoden (pp. 1–20). Springer Fachmedien Wiesbaden.
https://doi.org/10.1007/978-3-658-36629-2_41-1
Hinds, J., & Joinson, A. N. (2018). What demographic attributes do our digital footprints reveal?
A systematic review.
PLOS ONE,
13(11), e0207112.
https://doi.org/10.1371/journal.pone.0207112
Ho, J. C.-T. (2020). How biased is the sample?
Reverse engineering the ranking algorithm of
Facebook’s
Graph application programming interface.
Big Data & Society,
7(1), 205395172090587.
https://doi.org/10.1177/2053951720905874
Howison, J., Wiggins, A., & Crowston, K. (2011). Validity
Issues in the
Use of
Social Network Analysis with
Digital Trace Data.
Journal of the Association for Information Systems,
12(12), 767–797.
https://doi.org/10.17705/1jais.00282
Jünger, J. (2021). A brief history of
APIs. In
Handbook of Computational Social Science, Volume 2 (1st ed., pp. 17–32). Routledge.
https://doi.org/10.4324/9781003025245-3
Jürgens, P., & Stark, B. (2022). Mapping
Exposure Diversity:
The Divergent Effects of
Algorithmic Curation on
News Consumption.
Journal of Communication, jqac009.
https://doi.org/10.1093/joc/jqac009
Keusch, F., & Kreuter, F. (2021). Digital trace data. In
Handbook of Computational Social Science, Volume 1 (1st ed., pp. 100–118). Routledge.
https://doi.org/10.4324/9781003024583-8
Luiten, A., Hox, J., & Leeuw, E. de. (2020). Survey
Nonresponse Trends and
Fieldwork Effort in the 21st
Century:
Results of an
International Study across
Countries and
Surveys.
Journal of Official Statistics,
36(3), 469–487.
https://doi.org/10.2478/jos-2020-0025
Mitchell, R. (2018). Web scraping with Python: Collecting more data from the modern web (Second edition). O’Reilly.
Ohme, J., Araujo, T., Boeschoten, L., Freelon, D., Ram, N., Reeves, B. B., & Robinson, T. N. (2023). Digital
Trace Data Collection for
Social Media Effects Research:
APIs,
Data Donation, and (
Screen)
Tracking.
Communication Methods and Measures.
https://doi.org/10.1080/19312458.2023.2181319
Ohme, J., Araujo, T., Vreese, C. H. de, & Piotrowski, J. T. (2021). Mobile data donations:
Assessing self-report accuracy and sample biases with the
iOS Screen Time function.
Mobile Media & Communication,
9(2), 293–313.
https://doi.org/10.1177/2050157920959106
Parry, D. A., Davidson, B. I., Sewall, C. J. R., Fisher, J. T., Mieczkowski, H., & Quintana, D. S. (2021). A systematic review and meta-analysis of discrepancies between logged and self-reported digital media use.
Nature Human Behaviour,
5(11), 1535–1547.
https://doi.org/10.1038/s41562-021-01117-5
Reiss, M. V. (2022). Dissecting
Non-
Use of
Online News –
Systematic Evidence from
Combining Tracking and
Automated Text Classification.
Digital Journalism, 1–21.
https://doi.org/10.1080/21670811.2022.2105243
Scharkow, M. (2016). The
Accuracy of
Self-
Reported Internet Use—
A Validation Study Using Client Log Data.
Communication Methods and Measures,
10(1), 13–27.
https://doi.org/10.1080/19312458.2015.1118446
Schatto-Eckrodt, T. (2022). Hidden biases – The effects of unavailable content on Twitter on sampling quality. In Grenzen, Probleme und Lösungen bei der Stichprobenziehung (pp. 178–195). Halem.
Thorson, K., Cotter, K., Medeiros, M., & Pak, C. (2021). Algorithmic inference, political interest, and exposure to news and politics on
Facebook.
Information, Communication & Society,
24(2), 183–200.
https://doi.org/10.1080/1369118X.2019.1642934
Wagner, M. W. (2023). Independence by permission.
Science,
381(6656), 388–391.
https://doi.org/10.1126/science.adi2430
Wu-Ouyang, B., & Chan, M. (2022). Overestimating or underestimating communication findings?
Comparing self-reported with log mobile data by data donation method.
Mobile Media & Communication, 205015792211371.
https://doi.org/10.1177/20501579221137162
Yan, P., Schroeder, R., & Stier, S. (2022). Is there a link between climate change scepticism and populism?
An analysis of web tracking and survey data from
Europe and the
US.
Information, Communication & Society,
25(10), 1400–1439.
https://doi.org/10.1080/1369118X.2020.1864005